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THERMAL REARRANGEMENT OF DIVINYLCYCLOPROPANE SYSTEMS. 

A NEW FORMAL TOTAL SYNTHESIS OF (_+)-QUADRONE 
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ABSTRACT: The key step of a new approach to the total synthesis of the structurally and physiologically 

interesting sesquiterpenoid (+)-quadrone (1) involves thermal (Cope) rearrangement of the highly 

functionalized divinylcyclopropane derivative 8. The product 9 of this process is converted into 19, thus 

completing a formal total synthesis of (+)-1. 

(-)-Quadrone, a cytotoxic sesquiterpenoid isolated from the fungus Asperaillus terreus.,’ has been shown to 

possess the constitutionla and absolution configuration2 shown in 1. Over the past few years, this novel 

substance has been the target of much synthetic inventiveness 3*4 and a number of ingeniously designed total 

syntheses of (+)-quadrone have been reported.3 We describe herein a new formal total synthesis of (f)-1 via 

a route distinctly different from those reported previously. 

1 
The synthetic sequence employed is outlined in Scheme 1. The keto ketal 2,5 which was obtained readily 

from the corresponding dione,6 was converted efficiently into the alkene 3 by means of a slightly modified 

Shapiro reaction7 Epoxidation of 3 via the corresponding bromohydrins,g treatment of the resultant mixture 

of epoxides (a-epoxide predominant) with sodium phenylselenide, and subsequent selenoxide thermolysis9 

gave a mixture of allylic alcohols which were separated by chromatography. Conversion of the major alcohol 

into the I.,&-butyldimethylsilyl ether 4 was accomplished by means of a standard procedure. 

Treatment of compound 4 with ethyl diazoacetate in the presence of rhodium(H) acetatelO provided, in 

excellent yield, a mixture of epimeric cyclopropanecarboxylic acid esters 5, along with a small amount (~5%) 

of product resulting from carbenoid insertion into the allylic bridgehead C-H bond. From a stereochemical 

point of view, cyclopropanation of the alkene 4 would be expected to occur from the convex side of the 

molecule opposite to the silyl ether moiety, and, thus, the relative configuration of 5 could be predicted with 

confidence. 

Subjection of the mixture of esters 5 to a reduction-oxidation sequence, followed by base-promoted 

equilibration of the resultant mixture of aldehydes, afforded a single substance 6. which was converted via 

standard reactions into the keto alkene 7 (65% overall yield from 5). Transformation of the ketone 7 into the 
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enol silyl ether 811 set the stage for the key step of the overall synthesis, involving thermal (Cope) 

rearrangement of the highly functionalized divinylcyclopropane system present in 8.i2v’3 Thus, thermolysis 

of 8 and subsequent treatment of the product 9 with tetra-g-butylammonium fluoride afforded, after 

chromatographic purification, the pure crystalline keto ketal 10 (77% from 8). 

With the basic carbon framework of (?)-quadrone assembled, the functionality present in 10 had to be 

employed to introduce the necessary appendages. The geminal methyl groups were added by subjection of 10 

to two successive treatments with lithium diisopropylamide and methyl iodide. Attempted Wolff-Kishner 

reduction of the resultant product 11 failed to produce the desired product 16, and, therefore, a more 

circuitous route for removal of the very hindered carbonyl group had to be employed. Reduction of 11 with 

lithium aluminum hydride produced the alcohols 12 and 13 (3:1, respectively),14 which were converted 

smoothly into the corresponding phosphorodiamidates 14 and 15.‘* Unfortunately, although 

lithium-ethylamine reduction15 of this mixture removed the OPO(NMe2)2 functions, substantial amounts of 

carbon-carbon double bond reduction also occurred. It was observed, however, that the phosphorodiamidate 

function of the minor epimer 15 was reductively removed much more slowly than the corresponding moiety of 

14. Therefore, it appeared that the carbon-carbon double bond reduction could be largely avoided if the 

reduction were to be carried out on epimerically pure 14. 

Treatment of 11 with lithium diisobutyl-q-butylaluminum hydrideI in ether gave exclusively (>95% yield) 

the alcohol 12. Reduction of the corresponding phosphorodiamidate 14 with lithium in methylamine17 

provided mainly the desired alkene 16, accompanied by a minor amount (-10%) of the over-reduced product. 

Epoxidation of 16 occurred exclusively from the less hindered o-face of the molecule. Treatment of the 

resultant epoxide with lithium diethylamide in benzenel* gave, after chromatographic purification of the 

crude product, the pure allylic alcohol 17. This material differs only in the nature of the ketal protecting 

group from an intermediate employed by Burke and coworkers3c in their synthesis of (?)-quadrone. Indeed, 

the 4-step sequence which we employed to convert 17 into 19 was, except for the third step, essentially 

identical with that reported previously by Burke gI&3c Thus, conversion of the alcohol 17 into the 

corresponding vinyl ether, followed by Claisen rearrangement of the latter substance, gave the olefinic 

aldehyde 18. Hydrogenation of 18 in hexanelg and subsequent removal of the ketal protecting group 

provided the keto aldehyde 19,20 which had been converted previously into (?)-quadrone. 3c 
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Scheme 1. (a) p-TsNHNH2, EtOH (b) 8-BuLi, Et20-HMPA (c) NBS, DMSO-H20; 

K2CO3, MeOH (d) PhSeNa, EtOH-THF; H202-H20, heat (e) L-BuMe2SiC1, imidazole, 

DMF (f) N2CHC02Et, Rh2(OAc)4 (g) LiAlH4, Et20 (h) C5H5NCr03.HCl, NaOAc, 

CH2Cl2 (i) pBuOK, pBuOH-THF (j) Ph3P = CH2, THF (k) 8-Bu4NF, THF (I) 

LDA, THF, -78OC; L-BuMe2SiOTf, THF-HMPA (m) 170-175°C, 5 h, C6H6 (sealed tube) 

(n) LDA, THF; Me1 (2 times) (0) Li(8-Bu)(i-Bu)2AlH, Et20 (p) 8-BuLi, THF; 

ClPO(NMe2)2, THF-HMPA (q) Li, MeNH2, -20°C, 10 min (r) a-Chloroperoxybenzoic 

acid, CH2Cl2 (s) LiNEt2, C6H6, reflux (t) EtOCH=CH2, Hg(OAc)2 (u) 240°C, 4.5 h, 

C6H6 (sealed tube) (v) H2, 10% Pd-on-C, hexane (w) HCI, H20, acetone. 
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